Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Allergy Clin Immunol ; 147(1): 81-91, 2021 01.
Article in English | MEDLINE | ID: covidwho-2095538

ABSTRACT

BACKGROUND: Severe immunopathology may drive the deleterious manifestations that are observed in the advanced stages of coronavirus disease 2019 (COVID-19) but are poorly understood. OBJECTIVE: Our aim was to phenotype leukocyte subpopulations and the cytokine milieu in the lungs and blood of critically ill patients with COVID-19 acute respiratory distress syndrome (ARDS). METHODS: We consecutively included patients less than 72 hours after intubation following informed consent from their next of kin. Bronchoalveolar lavage fluid was evaluated by microscopy; bronchoalveolar lavage fluid and blood were assessed by 10-color flow cytometry and a multiplex cytokine panel. RESULTS: Four mechanically ventilated patients (aged 40-75 years) with moderate-to-severe COVID-19 ARDS were included. Immature neutrophils dominated in both blood and lungs, whereas CD4 and CD8 T-cell lymphopenia was observed in the 2 compartments. However, regulatory T cells and TH17 cells were found in higher fractions in the lung. Lung CD4 and CD8 T cells and macrophages expressed an even higher upregulation of activation markers than in blood. A wide range of cytokines were expressed at high levels both in the blood and in the lungs, most notably, IL-1RA, IL-6, IL-8, IP-10, and monocyte chemoattactant protein-1, consistent with hyperinflammation. CONCLUSION: COVID-19 ARDS exhibits a distinct immunologic profile in the lungs, with a depleted and exhausted CD4 and CD8 T-cell population that resides within a heavily hyperinflammatory milieu.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Lung/immunology , Lymphopenia/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Cross-Sectional Studies , Cytokines/immunology , Female , Humans , Immunophenotyping , Lung/pathology , Lymphopenia/pathology , Male , Middle Aged , Respiratory Distress Syndrome/pathology , Th17 Cells/pathology
2.
Exp Physiol ; 107(7): 665-673, 2022 07.
Article in English | MEDLINE | ID: covidwho-1807292

ABSTRACT

NEW FINDINGS: What is the topic of this review? Lactate is considered an important substrate for mitochondria in the muscles, heart and brain during exercise and is the main gluconeogenetic precursor in the liver and kidneys. In this light, we review the (patho)physiology of lactate metabolism in sepsis and coronavirus disease 2019 (COVID-19). What advances does it highlight? Elevated blood lactate is strongly associated with mortality in septic patients. Lactate seems unrelated to tissue hypoxia but is likely to reflect mitochondrial dysfunction and high adrenergic stimulation. Patients with severe COVID-19 exhibit near-normal blood lactate, indicating preserved mitochondrial function, despite a systemic hyperinflammatory state similar to sepsis. ABSTRACT: In critically ill patients, elevated plasma lactate is often interpreted as a sign of organ hypoperfusion and/or tissue hypoxia. This view on lactate is likely to have been influenced by the pioneering exercise physiologists around 1920. August Krogh identified an oxygen deficit at the onset of exercise that was later related to an oxygen 'debt' and lactate accumulation by A. V. Hill. Lactate is considered to be the main gluconeogenetic precursor in the liver and kidneys during submaximal exercise, but hepatic elimination is attenuated by splanchnic vasoconstriction during high-intensity exercise, causing an exponential increase in blood lactate. With the development of stable isotope tracers, lactate has become established as an important energy source for muscle, brain and heart tissue, where it is used for mitochondrial respiration. Plasma lactate > 4 mM is strongly associated with mortality in septic shock, with no direct link between lactate release and tissue hypoxia. Herein, we provide evidence for mitochondrial dysfunction and adrenergic stimulation as explanations for the sepsis-induced hyperlactataemia. Despite profound hypoxaemia and intense work of breathing, patients with severe coronavirus disease 2019 (COVID-19) rarely exhibit hyperlactataemia (> 2.5 mM), while presenting a systemic hyperinflammatory state much like sepsis. However, lactate dehydrogenase, which controls the formation of lactate, is markedly elevated in plasma and strongly associated with mortality in severe COVID-19. We briefly review the potential mechanisms of the lactate dehydrogenase elevation in COVID-19 and its relationship to lactate metabolism based on mechanisms established in contracting skeletal muscle and the acute respiratory distress syndrome.


Subject(s)
COVID-19 , Sepsis , Adrenergic Agents/metabolism , Humans , Hypoxia , Lactate Dehydrogenases/metabolism , Lactic Acid/metabolism , Muscle, Skeletal/metabolism , Oxygen/metabolism , Sepsis/complications , Sepsis/diagnosis
3.
Acta Anaesthesiol Scand ; 64(9): 1365-1375, 2020 10.
Article in English | MEDLINE | ID: covidwho-671325

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus-2 has caused a pandemic of coronavirus disease (COVID-19) with many patients developing hypoxic respiratory failure. Corticosteroids reduce the time on mechanical ventilation, length of stay in the intensive care unit and potentially also mortality in similar patient populations. However, corticosteroids have undesirable effects, including longer time to viral clearance. Clinical equipoise on the use of corticosteroids for COVID-19 exists. METHODS: The COVID STEROID trial is an international, randomised, stratified, blinded clinical trial. We will allocate 1000 adult patients with COVID-19 receiving ≥10 L/min of oxygen or on mechanical ventilation to intravenous hydrocortisone 200 mg daily vs placebo (0.9% saline) for 7 days. The primary outcome is days alive without life support (ie mechanical ventilation, circulatory support, and renal replacement therapy) at day 28. Secondary outcomes are serious adverse reactions at day 14; days alive without life support at day 90; days alive and out of hospital at day 90; all-cause mortality at day 28, day 90, and 1 year; and health-related quality of life at 1 year. We will conduct the statistical analyses according to this protocol, including interim analyses for every 250 patients followed for 28 days. The primary outcome will be compared using the Kryger Jensen and Lange test in the intention to treat population and reported as differences in means and medians with 95% confidence intervals. DISCUSSION: The COVID STEROID trial will provide important evidence to guide the use of corticosteroids in COVID-19 and severe hypoxia.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Hydrocortisone/therapeutic use , Hypoxia/complications , Hypoxia/drug therapy , Research Design , Adult , Anti-Inflammatory Agents/therapeutic use , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL